Conjuntos Convexos Mat. Frank Patrick Murphy Hernandez Tarea 1

Sea $V = \mathbb{R}^n$

(1) Sea $C \subseteq V$ convexo tal que $\bar{C} = V$ entonces C = V.

Una función $f: \mathbb{R} \longrightarrow \mathbb{R}$ se llama convexa si para toda $x, y \in \mathbb{R}$ y $t \in [0, 1]$, $f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y)$.

- (2) Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ una función. Demuestre que f es convexa si y sólo si $\{(x,y) \in \mathbb{R}^2 \mid f(x) \leq y\}$ es un conjunto convexo.
- (3) Sea $C \subseteq V$ cerrado. Demuestre que C + C = 2C si y sólo si C es convexo. El regreso es directo y no usa la hipótesis de que C sea cerrado, para la ida, un racional díadico es un racional de la forma $q = \frac{m}{2^n}$, demuestre primero que para todo $t \in [0, 1]$ díadico se cumple que para todo $\bar{x}, \bar{y} \in C, t\bar{x} + (1-t)\bar{y} \in C$, esto se demuestra por inducción, ahora para concluir que es convexo use que todo real es límite de díadicos y que el conjunto es cerrado.
- (4) Sea $C \subseteq V$ convexo. Demuestre que para toda $a, b \in \mathbb{R}$, (a+b)C = aC + bC. De un contraejemplo de que esto no se cumple si C no es convexo.
- (5) Sea $C \subseteq V$ convexo. Demuestre que $conv(\bar{x} + C) = \{t\bar{x} + (1 t)\bar{y} \mid t \in [0, 1], \bar{y} \in C\}$. Sean $A, B \subseteq V$, demuestre que si A es convexo entonces $B \neq \emptyset$ entonces $conv(A \cup B) = \bigcup_{\bar{x} \in B} conv(A \cup \{\bar{x}\})$.
- (6) Sean $S, T \subseteq V$ y $a \in \mathbb{R}$. Demuestre que conv(S + aT) = conv(S) + aconv(T). Concluya que si S y T son convexos entonces S + T y aS son convexos.

Una función $A: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ es una transformación afín, si existen $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ lineal (abre sumas y saca escalares) y $\bar{c} \in \mathbb{R}^m$ tales que $A = f + \bar{c}$, es decir, las transformaciones afines son la suma de una transformación lineal más una constante.

- (7) Sean $A: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ una transformación afín, $C \subseteq \mathbb{R}^m$ convexo y $D \subseteq \mathbb{R}^n$ convexo. Demuestre que $A^{-1}(C)$ y A(D) es convexo.
 - Sea $\{A_i\}_{i=1}^{\infty}$ una sucesión de subconjuntos de V, decimos que la sucesión es monotona en caso de que $A_n \subseteq A_{n+1}$ para todo n natural o $A_{n+1} \subseteq A_n$ para todo n natural. También se define el límite superior de la sucesión como $\limsup A_n := \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$ y el límite inferior como $\liminf A_n := \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$. Se dirá que la sucesión converge a A si $\limsup A_n = \liminf A_n = A$.
- (8) Sea $\{A_i\}_{i=1}^{\infty}$ una sucesión de subconjuntos de V. Demuestre que si la sucesión es monotona y todos los elementos de la sucesión son convexos entonces $\bigcup_{i=1}^{\infty} A_i$ es convexo. Demuestre que si todos los elementos de la sucesión son convexos entonces lim inf A_n es convexo, vea que no es cierto para lim sup A_n . Concluya que si todos los elementos de la sucesión son convexos y esta converge a A, entonces A es convexo. Si la sucesión es monotona, es cierto que, $conv(\bigcap_{i=1}^{\infty} A_i) = \bigcap_{i=1}^{\infty} conv(A_i)$ y $conv(\bigcup_{i=1}^{\infty} A_i) = \bigcup_{i=1}^{\infty} conv(A_i)$.
- (9) Sea $S \subseteq V$. Demuestre que $\overline{conv(S)} = conv(\overline{S})$.

Sea $S \subseteq V$, se define el núcleo de S como $nuc(S) := \{\bar{x} \in S \mid [\bar{x}, \bar{y}] \subseteq S, \forall \bar{y} \in S\}.$

- (10) Sean $A, B \subseteq \mathbb{R}^n$ demuestre que:
 - (a) $nuc(\emptyset) = \emptyset$.
 - (b) En general si $nuc(A) = \emptyset$ no tiene por que cumplirse que $A = \emptyset$.
 - (c) nuc(A) es convexo.
 - (d) A = nuc(A) si y sólo si A es convexo.
 - (e) nuc(A) = conv(A) si y sólo si A es convexo.
 - (f) Si A es acotado entonces nuc(A) y conv(A) son acotados.
 - (g) $nuc(A) \cap nuc(B) \subseteq nuc(A \cap B)$.
 - (h) La contensión de conjuntos del inciso anterior puede ser propia.
 - (i) En general no se cumple que $nuc(A \cup B) \subseteq nuc(A) \cup nuc(B)$ ni la contensión contraria.

- (j) Tampoco se cumple que si $A\subseteq B$ entonces $nuc(A)\subseteq nuc(B).$
- (k) $\overline{nuc(S)} = nuc(\bar{S}).$
- (l) Qué pasa con nuc(A+B) = nuc(A) + nuc(B)?